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There is now considerable evidence showing that the time to read a
word out loud is influenced by an interaction between orthographic
length and lexicality. Given that length effects are interpreted by
advocates of dual-route models as evidence of serial processing this
would seem to pose a serious challenge to models of single word
reading which postulate a common parallel processing mechanism
for reading both words and nonwords (Coltheart, Rastle, Perry,
Langdon, & Ziegler, 2001; Rastle, Havelka, Wydell, Coltheart, &
Besner, 2009). However, an alternative explanation of these data is
that visual processes outside the scope of existing parallel models
are responsible for generating the word-length related phenomena
(Seidenberg & Plaut, 1998). Here we demonstrate that a parallel
model of single word reading can account for the differential
word-length effects found in the naming latencies of words and
nonwords, provided that it includes a mapping from visual to ortho-
graphic representations, and that the nature of those orthographic
representations are not preconstrained. The model can also simulate
other supposedly ‘‘serial’’ effects. The overall findings were consis-
tent with the view that visual processing contributes substantially
to the word-length effects in normal reading and provided evidence
to support the single-route theory which assumes words and non-
words are processed in parallel by a common mechanism.

� 2012 Elsevier Inc. Open access under CC BY license. 
1. Introduction

Word length is one of the key diagnostic lexical variables to affect response latencies in visual word
recognition. A considerable number of studies have examined word-length effects, either by using
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naming tasks or lexical decision tasks (Balota, Cortese, Sergent-Marshall, Spieler, & Yap, 2004; Forster
& Chambers, 1973; Frederiksen & Kroll, 1976; New, Ferrand, Pallier, & Brysbaert, 2006; Weekes, 1997;
Whaley, 1978). Forster and Chambers (1973) found significant word-length effects in both tasks
where longer words tended to take a longer time to process than short words. However, a subsequent
study conducted by Frederiksen and Kroll (1976) only obtained the equivalent word-length effects for
both words and nonwords in naming; no effect was observed in the lexical decision task. Weekes
(1997) found significant word-length effects for naming nonwords and weak effects for low-frequency
words, but no length effects for high-frequency words. In his study, all items were monosyllables
matched for number of phonemes, initial phoneme, orthographic neighbourhood size, number of ene-
mies and friends, summed bigram frequency and average grapheme frequency to exclude potentially
contaminating effects. In addition to these factorial experiments, a number of recent studies have been
conducted to explore factors that influence lexical processing based on a large database of behavioural
data-the English Lexicon Project (ELP) (Balota et al., 2004, 2007; New et al., 2006). These studies ana-
lyse the database by using multiple regression which avoids the difficulty in controlling for multiple-
lexical variables that is often encountered in the factorial design. Balota et al. (2004) reported that the
word-length was a significant predictor of response times and that the effect was much greater for the
naming task than for lexical decision. The effect was present for both young and old groups tested on
2428 monosyllabic words. Their results identified length effects in word naming tasks and also a
length by lexicality interaction in both naming and lexical decision tasks. One surprising aspect of
these data demonstrated by New et al. (2006) was that a U-shaped pattern of word-length effects be-
came apparent when they tested the performance of lexical decision across the full ELP dataset of over
33,006 words. A facilitated length effect was observed for words with 3–5 letters, with no significant
length effect for words with 5–8 letters and an inhibited length effect for words with 8–13 letters.
New et al. (2006) suggested that the inhibitory length effect for long words might be attributable to
the decrease of visual acuity necessary to accommodate longer visual stimuli, also long words were
likely to be refixated during reading.

In addition to the behavioural data, there is also evidence of word-length effects from neuroimag-
ing studies. Hauk and Pulvermuller (2004) investigated the effects of word length and word frequency
in a lexical decision task by using electroencephalography (EEG). Their results demonstrated that the
long words and short words had the strongest event-related potentials (ERPs) in different time ranges.
No interaction between word length and word frequency was observed in their study. However,
Penolazzi, Hauk, and Pulvermuller (2007) demonstrated an interaction between word frequency
and word length early in the ERP from 120 ms to 180 ms. Wydell, Vuorinen, Helenius, and Salmelin
(2003) investigated the neural correlates of the interaction between word length and lexicality by
using magnetoencephalography (MEG). They found reliable length effects for both words and non-
words in the occipital cortex at about 100 ms after the stimulus onset but words showed a smaller
effect than nonwords in the left superior temporal cortex between 200 ms and 600 ms.

When all of this evidence is considered it seems inescapable that there are real effects of word
length in naming both words and nonwords and that there is an interaction between word lexicality
and word length even for monosyllabic words. The word-length effects for nonwords are greater than
low-frequency words (Richards & Heller, 1976; Weekes, 1997), and the length effects for low-fre-
quency words are greater than high-frequency words (Balota et al., 2004; Penolazzi et al., 2007; Wee-
kes, 1997).

Many authors of reading models have considered that the word-length effect reveals important as-
pects of the natural reading process, which provide useful constraints on model design (Coltheart
et al., 2001; New et al., 2006; Plaut, McClelland, Seidenberg, & Patterson, 1996; Weekes, 1997). Hence
the presence or absence of the word-length effect for different types of stimuli should have important
implications for models of single word reading and in particular on the debate between dual-route
models (Coltheart, Curtis, Atkins, & Haller, 1993; Coltheart et al., 2001) (with a serial processing com-
ponent) and connectionist models (Plaut et al., 1996; Seidenberg & McClelland, 1989), which are par-
allel processors. According to the dual-route theory normal readers have two different routes for
converting print to speech (Coltheart et al., 1993). The lexical route operating in parallel accesses
the lexical entry from the presented word form and retrieves its pronunciation for reading aloud.
The non-lexical route, or the grapheme–phoneme conversion route, converts the graphemes of a letter
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string into phonemes by a set of grapheme–phoneme correspondence (GPC) rules in a sequential man-
ner. The dual-route cascaded (DRC) model developed by Coltheart et al. (1993, 2001) is a computa-
tional realisation of the dual-route theory. In this model the lexical route is mainly used for
processing regular and exception words, while the non-lexical route is needed to process nonwords,
which it does in a serial manner processing the output phonology one phoneme at a time. This neatly
explains the length � lexicality interaction as the nonwords (which show a strong length effect) are
processed exclusively via a serial processing module, whereas the real words are supported largely
by a parallel process. Thus, it is not difficult to imagine that the DRC model which postulates two dif-
ferent routes for processing words and nonwords can account for the differential word-length effects
found by Weekes (1997). Indeed, Coltheart et al. (2001) tested the DRC model on Weekes’s dataset and
demonstrated that the DRC model can reproduce the pattern of length effects found in the empirical
data while Harm & Seidenberg, 1999, 2004; Plaut et al.’s (1996) parallel model failed to show the cor-
rect pattern of word length by word lexicality interaction. As a result of this the lexicality by word-
length interaction in normal reading is often taken as a strong support for the dual-route theory. How-
ever, this conclusion is based on a presupposition that all connectionist models of reading aloud will
fail to simulate length effects in normal reading.

An alternative view is articulated in connectionist models of reading (Harm & Seidenberg, 1999,
2004; Plaut et al., 1996; Seidenberg & McClelland, 1989) which assume that a single parallel process-
ing mechanism is responsible for reading both words and nonwords. Seidenberg and McClelland
(1989) proposed a general framework for the parallel distributed processing (PDP) model of word rec-
ognition and naming – hereafter known as SM89 model. The SM89 model has successfully reproduced
a number of phenomena observed in normal and impaired reading. However, the main weakness of
SM89 model is that the performance of SM89 model on reading nonwords was significantly poorer
than the performance achieved by normal readers (Besner, 1989; Coltheart et al., 1993). In support
of single-route theory, Plaut et al. (1996) developed a revised model, hereafter PMSP96, to improve
the poor performance of SM89 model on nonword reading. The PMSP96 model showed a remarkable
improvement in nonword reading such that it reads nonwords as well as normal readers. The key dif-
ference between the PMSP96 and the SM89 models relates to the way in which orthographic and pho-
nological representations were encoded. The PMSP96 encoding scheme was designed to facilitate
maximum use of the regularities in the mappings between orthographic and phonological represen-
tations. To do this each letter string was parsed into the onset, vowel and coda clusters of graphemes
and phonemes. By this scheme, it is possible to construct position independent orthographic and pho-
nological representations according to graphotactic and phonotatctic constrains, allowing spelling–
sound regularities among words to be captured effectively. More recently, Monaghan and Ellis
(2010) showed that orthographic length was a significant predictor for the naming latencies produced
by their parallel model which mapped orthography to phonology. However, as their study was not de-
signed to investigate the word-length effect, they did not perform a regression analysis on nonwords.
It remains unclear whether their model can produce the length effect for nonwords and show a word
length by lexicality interaction. Despite the fact that the parallel models have proven to account for
empirical data obtained from both normal and impaired reading, they cannot currently capture the
patterns of the length effects that are seen in human data (e.g., Weekes, 1997). In addition, there
are two other length related phenomena, which are often used as arguments against parallel models:
the position of irregularity effect (Rastle & Coltheart, 1999) and the whammy effect (Rastle & Colt-
heart, 1998). The position of irregularity effect in reading is found in low frequency exception words
where the regularity effect is modulated by position. This effect has been interpreted as evidence for
serial processing. However, Zorzi’s (2000) CDP model was able to capture this effect due to the fact
that the position of irregularity factor is actually confounded with grapheme–phoneme consistency.
The whammy effect relates to the fact that 5-letter nonwords with 3 graphemes produce longer laten-
cies than 5-letter nonwords with 5 graphemes. According to serial processing accounts, the spurious
phoneme unit will activate early inhibiting the late activation of the correct phoneme. However, the
whammy effect may also be explained by the parallel processing account simply due to competition
between possible target phonemes, which is greater in 3 grapheme words. The existence of these ‘‘se-
rial’’ length related effects means that parallel models could be vulnerable to the criticism that with-
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out some kind of additional serial processing component they may never be able to account ade-
quately for these phenomena (Coltheart et al., 2001; Rastle et al., 2009; Weekes, 1997).

In addition to the triangle and DRC models some hybrid reading models have begun to emerge,
which attempt to combine the strengths and eliminate the weaknesses of the two approaches. The
connetionist dual process (CDP) model developed by Zorzi, Houghton, and Butterworth (1998) has
the dual-route architecture but is based on parallel processors. In the CDP model, the lexical route
is conceptualised as having a mediated hidden layer (i.e., the lexicon layer) between orthographic
and phonological representations. As for the non-lexical route, it has direct connections between
orthographic and phonological layers to capture the regularities of spelling–sound relationships in
English and it operates in parallel. The CDP model was also tested for length effects by Coltheart
et al. (2001) and the results showed no interaction between length and lexicality. It seems that CDP
model can at best only produce a weak length effect for nonwords (Perry, Ziegler, & Zorzi, 2007; Zorzi,
2010). A more sophisticated model named CDP+, was subsequently developed by Perry et al. (2007) to
address this weakness. The CDP+ model combines the non-lexical route of CDP model with the lexical
route of DRC model. It is important to note that the non-lexical route of CDP+ has an addition of a se-
rial grapheme parsing mechanism, which is a major difference from CDP. This procedure generates a
length dependent effect because it parses letter strings into graphemes sequentially from left to right.
Once parsed the available graphemes are instantaneously used as input for the mappings between
orthography and phonology. The phonological processing time is influenced by this serialising proce-
dure. The CDP+ model is therefore a parallel model which has a serial processing component. Perry
et al. (2007) tested their model on Weekes (1997) data and the results showed the CDP+ model pro-
duced a length effect and a correct interaction between length and lexicality as seen in human data.
According to Perry et al. (2007) and Zorzi (2010), the addition of the serialising procedure was essen-
tial to capture the length effect.

On this basis the length effect still appears to be a critical issue for any parallel reading model
which does not utilise a serial processing (Rastle et al., 2009). However, the assumption that length
effects are the hallmark of serial processing components remains arguable. Proponents of the triangle
model have made an attempt to provide alternative explanations of this issue. Seidenberg and Plaut
(1998) argue that word length is complicated variable to understand because it affects several pro-
cesses of word reading including the encoding of the visual display and the production of articulatory
output. More recently, Kawamoto (2010) also propose similar ideas that other factors such as limited
visual processing capacity and articulatory processing could be responsible for the length effect. These
aspects are outside the domain of existent triangle models and so have not yet been tested. Articula-
tory processing may contribute to the length effect because there are more complicated initial pho-
neme clusters for long words than short words (e.g., /spr/ for SPRAY, /r/ for RAY). This might result
in disproportionate delay times for long words to be articulated (Kawamoto & Kello, 1999; Plaut,
1999). Based on this evidence it would seem at least a proportion of length effects can be accounted
for by the articulatory process. However, this is unlikely to be the whole story because the differential
length effects demonstrated by Weekes (1997) must be largely independent of the articulatory char-
acteristics as the stimuli are carefully matched for initial phoneme.

There may also be some basic perceptual factors that make a substantial contribution to length ef-
fects in normal reading. This view is supported by consideration of the natural constraints of visual
processing in visual word recognition. Visual acuity has been shown to decrease as letters are moved
further from the centre of fixation, resulting in the loss of visual information. The drop of visual acuity
is approximately linear with the distance from the fixation location (Nazir, Oregan, & Jacobs, 1991).
Hence, long words tend to receive more re-fixations than short words to overcome the limits of visual
acuity, suggesting another possible account of the word-length effect. On the other hand, word length
seems to have relatively little influence in skilled readers in compared with beginning readers or chil-
dren as the skilled readers are able to maximise visual acuity by the selection of fixation location,
known as the ‘optimal viewing position’ (OVP) (McConkie, Kerr, Reddix, Zola, & Jacobs, 1989; Oregan,
Levyschoen, Pynte, & Brugaillere, 1984). For English readers, performance is the best when the words
are fixed between the beginning and the middle of the words across different visual recognition tasks.
The most likely explanation for the OVP effect is perceptual learning (Brysbaert & Nazir, 2005; Nazir,
2000; Nazir, Ben-Boutayab, Decoppet, Deutsch, & Frost, 2004). Over learning, the representations of
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word stimuli may be rebuilt repeatedly for different retinal locations to form the visual pattern mem-
ories. It is likely that the best viewing location for the rapid and efficient recognition of a word can be
optimised through the exposure to multiple representations of a particular word. Interestingly, Nazir
et al. (2004) found the performance of word recognition was highly correlated with the distribution of
landing positions of the eyes in words; this result was observed only with familiar word stimuli but
not with unfamiliar nonwords, suggesting the role of low-level perceptual learning in visual word rec-
ognition of these familiar stimuli.

Another stream of behavioural evidence comes from studies where word-length effects are artifi-
cially induced by adding visual distortions to stimuli during reading. The nature of the distortion can
be very varied such as reducing stimulus contrast (Fiset, Arguin, & Fiset, 2006; Legge, Ahn, Klitz, &
Luebker, 1997), displaying stimulus in normal peripheral vision (Legge, Mansfield, & Chung, 2001),
displaying stimulus in the left visual field (Bub & Lewine, 1988; Ellis, Young, & Anderson, 1988; Lav-
idor & Bailey, 2005; Lavidor & Ellis, 2002; Young & Ellis, 1985), displaying stimulus vertically (Bub &
Lewine, 1988; Cohen, Dehaene, Vinckier, Jobert, & Montavont, 2008) or increasing letter spacing of the
word stimulus (Cohen et al., 2008). All of these stimulus manipulations produce a certain amount of
visual difficulties in normal readers that leads to the emergence of the word-length effect. These find-
ings from psychophysical research suggest that the word-length effects can be triggered by any form
of unfamiliar visual stimuli. From this perspective we would argue that the characteristic length ef-
fects found when reading nonwords might result from the unfamiliarity of the visual stimuli rather
than being evidence of any special serial processing mechanism. Although we acknowledge that in
some circumstances the unfamiliarity maybe so great as to prompt a completely different sequential
strategy that is unrelated to normal reading mechanisms (e.g. for reading mirror image text).

In addition to evidence from normal readers it is important to consider evidence from patients who
suffer from a disorder known as pure alexia (PA). Patients with pure alexia are characterised by slow
reading behaviour and reading times that are linearly correlated with word length (Patterson & Kay,
1982; Warrington & Shallice, 1980). Many researchers have argued that the locus of this deficit is at
the early stages of visual processing (Arguin, Fiset, & Bub, 2002; Behrmann, Nelson, & Sekuler, 1998;
Behrmann & Shallice, 1995; Farah & Wallace, 1991; Kay & Hanley, 1991; Rapp & Caramazza, 1991).
Under this view, which we share, the exaggerated word-length effects observed in PA patients are
thought to result from a visual deficit, although the underlying cause of pure alexia remains somewhat
debatable (Coslett & Saffran, 1989; Warrington, 1980). The idea that there is a visual perception deficit
in pure alexia was first proposed by Farah and Wallace (1991). This view is supported by evidence that
PA patients have the impaired performance on both linguistic and non-linguistic stimuli (Behrmann
et al., 1998; Mycroft, Behrmann, & Kay, 2009). Many recent functional imaging studies suggest that
pure alexia results from damage to a specific neural region of left hemisphere, known as the visual
word form area (VWFA) (Cohen et al., 2004). The VWFA is often regarded as an area which generates
an invariant representation of letter identities, which is in the mid-fusiform gyrus within the left
occipito-temporal sulcus. The activations of the VWFA are modulated by word lexicality, with stronger
activations for nonwords than for words (Fiez, Balota, Raichle, & Petersen, 1999; Price, Wise, & Frac-
kowiak, 1996; Xu et al., 2001). More recently, Schurz et al. (2010) showed an interaction between
word length and lexicality in the VWFA. The length effect for words was only observed in occipital cor-
tex but not in the VWFA, while the length effect for nonwords was obtained throughout the ventral
visual pathway including the VWFA. Despite the considerable evidence for the involvement of the
VWFA in visual word recognition, it seems unlikely to be specialised for visual word forms (Devlin,
Jamison, Gonnerman, & Matthews, 2006; Price & Devlin, 2003). Rather, Price and Devlin (2003) argued
that left mid-fusiform gyrus (VWFA) was a polymodal area driven mostly by visual input. They sup-
ported this by showing that VWFA was not only activated by word form stimuli but also activated
when subjects were asked to name objects and repeat auditorially presented words.

In summary, there is good evidence to support the view that the differential length effects for
monosyllabic words and nonwords in normal reading may arise as a consequence of visual processing
procedures occurring in the occipital mid-fusiform gyrus. The characteristic lexicality by length inter-
action could stem from the greater visual difficulty with unfamiliar stimuli resulting in a longer visual
processing time for nonword reading and a more marked dependence on word length. From this view-
point, it seems reasonable that existing parallel models cannot provide an adequate account of this
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interaction without the implementation of some kind of visual system. To test this, the current study
developed a parallel model, including a visual processing stage, to investigate whether this additional
visual factor can account for the word-length effects in normal reading. The key test of this was the
ability of the model to replicate the lexicality by length interaction found by Weekes (1997). Four sim-
ulations were conducted: Simulation 1 used fixed orthographic representations adopted from PMSP96
model. Simulation 2 used learned orthographic representations (i.e., the orthographic representations
were allowed to emerge during training). Simulation 3 included an added semantic influence on pho-
nological outputs. Simulation 4 extended the work by exploring the effect of different viewing posi-
tions and by testing whether the model could simulate other ‘‘serial effects’’.

2. Simulation 1

The model was developed on the basis of the general framework of the triangle model (Plaut et al.,
1996; Seidenberg & McClelland, 1989), but with the addition of a visual input layer and an additional
hidden layer prior to the orthographic layer, which formed the input in the original versions of the tri-
angle models. The training corpus consisted of 8160 monosyllabic words including Plaut et al.’s (1996)
word list, Weekes’ (1997) word list, and all the monosyllabic words (including inflections) from the
ELP database except for prefixes, suffixes and proper nouns. The performance of the model was first
compared with the performance achieved by Plaut et al.’s (1996) model, and then the model was
tested on Weekes’ (1997) dataset. The ability of the model to account for the differential length effects
on naming words and nonwords was assessed.

2.1. Method

2.1.1. Model architecture
Fig. 1 shows the architecture of the network. The network consisted of five layers of units: 3072

visual units, 60 hidden units, 105 grapheme units, 250 hidden units and 61 phoneme units. The first
two layers of the network formed the visual processing system, and the last three layers of the net-
work were for the mapping from the orthographic to phonological representations in which the func-
tion was exactly the same as the feedforward network in the Plaut et al.’s study (1996, Simulation 1).
Each layer of units was fully connected to the next layer. Each visual unit was connected to each unit
Fig. 1. The architecture of the feedforward network. The arrows represent fully connections from one layer to another layer.
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at the hidden layer above, and each hidden unit was connected to each unit at the orthographic layer.
Similarly, each orthographic unit was connected to each unit in the hidden layer above and each hid-
den unit was connected to each unit in the phonology layer.

2.1.2. Visual image representations
The network was directly fed with bitmap images of words. The 12-point lower case words in Arial

font were represented in white against a black background. Each word was positioned with its vowel
aligned on a fixed column of the image. (Networks using other types of visual representations are ex-
plored in Section 6.1.) Twelve columns were used in all and the size of each column was 16 � 16 pix-
els. Hence, there were in total 3072 visual units for the representations of input images. Fig. 2 shows
examples of word images used for the training. All the word images were created by using the Matlab
programming software, and image processing tools were used to convert word images into input bin-
ary values for visual representations.

2.1.3. Orthographic and phonological representations
The orthographic and phonological representations schemes were taken from the PMSP96 model

(Plaut et al., 1996). For the orthographic representations, each word as a letter string was parsed into
the onset, vowel and coda clusters of graphemes. Similarly, for the phonological representations the
word was also parsed into the onset, vowel and coda clusters of phonemes. Table 1 shows the ortho-
graphic and phonological representation schemes used in the simulation.

2.1.4. Training procedures
The network was trained using the back-propagation algorithm with a global learning rate of 0.05,

a weight decay of 0.00001 and momentum of 0.95. Cross entropy was used as the error function. The
initial weights for the connections between units were set to random values between �0.1 and 0.1.
The training corpus consisted of 8160 word image bitmaps. The network was then trained to generate
the orthographic and phonological outputs based on these visual representations. Frequency was
Fig. 2. Examples of lower case, 12-points words in Arial font in the training corpus. The vowel of each word is aligned on the
sixth column.

Table 1
Orthographic and phonological representations.

Orthography
Onset Y S P T K Q C B D G F V J Z L M N R W H CH GH GN PH PS RH SH TH TS WH
Vowel E I O U A Y AI AU AW AY EA EE EI EU EW EY IE OA OE OI OO OU OW OY UE UI UY
Coda H R L M N B D G C X F V J S Z P T K Q BB CH CK DD DG FF GG GH GN KS LL NG NN PH PP PS RR SH SL SS TCH TH TS

TT ZZ U E ES ED

Phonology
Onset sS C z Z j f v T D p b t d k g m n h l r w y
Vowel a e i o u @ ^ A E I O U W Y
Coda r l m n N b g d psksts s z f v p k t S Z T D C j
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implemented by using a square-root function to compress the frequency range (Plaut et al., 1996;
Seidenberg & McClelland, 1989). This compressed frequency was used to scale error derivatives for
the computation of back-propagation. To preclude the possibility that the simulation results could
be a consequence for one particular set of initial weights, the network was trained 10 times with dif-
ferent random initial weights.

2.1.5. Testing procedures
The decoding procedure for reading the orthographic output of the network was straightforward.

For all 3 grapheme groups, the orthographic output was the ordered composition of all active graph-
emes in each group whose activations were greater than .5. Similarly, the procedure for the generation
of the phonological output was determined according to the activities of the phoneme units at the
phonology layer. However, as in Plaut et al. (1996) the procedure here was slightly more complicated.
For the vowel units the most activated vowel unit was selected as output. For the onset and coda the
output units were divided into groups of mutually exclusive units the highest active unit above .5 was
taken as the output for each group. If no unit was active above .5 than none of the group was included
as part of the output. If either of the ks, ts or ps units was active along with their components than the
order of the components was reversed. The performance of the network was tested every 200 epochs
throughout the training. The key measure of the performance of the network comes from testing
whether the network can produce correct pronunciation at the phonology units. It is possible that
the network could make orthographic errors, but still produce the correct pronunciation. However,
accuracies for both orthographic and phonological layers were recorded.

2.2. Results

After 1600 training epochs, the accuracy rates were 99.26% and 99.06% for the orthographic and
phonological levels respectively. Table 2 shows the performance of the network compared with the
performance achieved by human subjects and the PMSP96 model. As in PMSP96 the network made
most errors on the 13 sets of homographs in training corpus. Homographs have the same spelling
but different pronunciations, and the appropriate one is usually dependent on the context used. Since
the network has no access to context or semantic information, it is impossible for it to distinguish
words with the same spelling but different meanings – so performance on these items will be at
chance levels. To make a useful comparison with the PMSP96 model we also tested on a restricted
word list corresponding to the training corpus of PMSP96. On these words the network achieved accu-
racy rates of 99.57% and 99.07% at the orthographic level and the phonological level respectively. This
was very close to the 99.13% phonological accuracy achieved by the PMSP96 model. For nonword
reading, the network was tested on a list of 43 regular consistent nonwords taken from Glushko
(1979). The consistent nonwords were created by changing the onset of an existing regular word.
As shown in Table 2, the performance of the network at the phonological output was almost indistin-
guishable from that of the PMSP96 model, but 4.34% more accurate than the human subjects’
performance.
Table 2
Performance of the network on words and nonwords (difference from human subjects in brackets).

Current Training Corpus Plaut et al. (1996) Glushko (1979)
Words Words Consistent Nonwords

Human subjects 99.84a 99.56a 93.80
PMSP96 model – 99.13 (�0.43) 97.70 (3.90)
Simulation 1 (orthography) 99.26 99.57 99.77
Simulation 1 (phonology) 99.06 (�0.78) 99.07 (�0.49) 98.14 (4.34)
Simulation 2 (phonology) 99.19 (�0.65) 99.13 (�0.43) 93.25 (�0.55)
Simulation 3 (phonology) 99.97 (0.13) 99.96 (0.40) 93.72 (�0.08)

a This is estimated upper bound based on the number of homographs in the corpus. It is assumed that all words would be
pronounced correctly and that homographs would be correct at a certain percentage of the time based on chance level
performance.
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2.2.1. Frequency and consistency effects
In addition to testing the network on normal reading and nonword reading, it is important to verify

whether the network could replicate the basic effects of frequency and consistency in naming latency
(Baron & Strawson, 1976; Glushko, 1979; Jared, McRae, & Seidenberg, 1990; Plaut et al., 1996; Seiden-
berg & McClelland, 1989; Stanovich & Bauer, 1978). Just as in PMSP96 Simulation 1, error score was
used as an analogue of naming latency. In the current simulation, the network was tested on four sets
of test stimuli: high-frequency regular words, low-frequency regular words, high-frequency irregular
words and low-frequency irregular words. Each set of stimuli consisted of 24 words taken from Tar-
aban and McClelland (1987). All words were matched for written frequency. Fig. 3 shows the mean
phonological error made by the network on words with different consistencies as the function of fre-
quency. As can be seen in Fig. 3, the network had larger error scores when naming irregular words
than regular words. There was also much larger frequency effect on naming irregular words than reg-
ular words. A 2 � 2 analysis of variance (ANOVA) was performed to analyse the data, where frequency
and consistency were treated as between-group variables. The main effect of frequency was signifi-
cant, F(1,92) = 22.58, p < .001. The main effect of consistency was also significant, F(1,92) = 44.74,
p < .001. There was a significant interaction between frequency and consistency, F(1,92) = 20.19,
p < .001.

2.3. Simulation of word-length effects

The key objective for this study is to investigate whether in a computational model of reading that
uses a single mechanism to process words and nonwords it is possible that a differential effect of word
length may emerge within the visual processing stage of the model. The crucial test of this is the pres-
ence of a lexicality by length interaction such that word processing is minimally influenced by length
whereas nonword processing is strongly length dependent (Weekes, 1997). There were 100 high-fre-
quency words, 100 low-frequency words and 100 nonwords in the Weekes’s experiment. Within each
lexical group, items were subdivided into 25 quartets of items, and each quartet of items consisted of
3, 4, 5 and 6 letter words. Items within each quartet were matched for their initial phonemes and ini-
tial letters. Each frequency grouping was also matched for mean orthographic neighbourhoodsize,
mean number of phonemes, mean number of enemies, mean number of friends, summed bigram fre-
quency, and mean grapheme frequency.

The network was tested on each lexical group. The results showed that the network could correctly
read all high-frequency and low-frequency words. The naming performance of the network for the
nonword stimuli was 99.3% and 96.8% at the orthographic level and the phonological level respec-
tively. Fig. 4a shows the mean error score at the phonological units as a function of word length
Fig. 3. Mean phonological error as a function of frequency and consistency across 10 runs for Simulation 1.



Fig. 4a. Mean error score computed at the phonological level for Simulation 1 as a function of word length and word type. Error
bars represent standard errors.

Fig. 4b. Mean error score computed at the orthographic level for Simulation 1 as a function of word length and word type. Error
bars represent standard errors.
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and word lexicality across 10 runs and Fig. 4b shows the pattern of the mean error score at the ortho-
graphic layer. Two 3 � 4 within-subjects ANOVA analyses were performed to analyse both the phono-
logical and orthographic errors. For the repeated measure analysis of the phonological error, both the
main effect of word type F(1.23,11.11) = 464.68, p < .001 (with a Greenhouse–Geisser adjustment to
compensate for the violation of the sphericity assumption) and the main effect of word length,
F(1.94,17.43) = 11.85, p = .001 (with a Greenhouse–Geisser adjustment to compensate for the viola-
tion of the sphericity assumption) were significant. The interaction between word type and word
length was also significant, F(2.05,18.41) = 11.38, p = .001 (with a Greenhouse–Geisser adjustment
to compensate for the violation of the sphericity assumption). However, there was no trend of a linear
effect of length either for words or for nonwords. Analysis of the mean error scores at the orthographic
units revealed main effects for both word length, F(1.20,10.79) = 139.79, p < .001 (with a Greenhouse–
Geisser adjustment to compensate for the violation of the sphericity assumption) and word type,
F(2,18) = 67.49, p < .001. There was a significant word length and word type interaction-
F(1.82,16.39) = 29.85, p < .001 (with a Greenhouse–Geisser adjustment to compensate for the
violation of the sphericity assumption). As shown in Fig. 4b, there seems to be a trend towards a linear
effect of length, but the interaction between words and nonwords is somewhat less marked than in
Weekes’ data.
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3. Simulation 2

In Simulation 1, the network was trained to map from vision to orthography, and then from orthog-
raphy to phonology. This shows that merely adding a visual layer to the PMSP96 model is not suffi-
cient to account for the length effects found in human reading. This may not be surprising, as this
method of introducing visual processing to the triangle model is probably not realistic. In particular,
the use of predefined orthographic representations cannot reflect the way in which children really
learn to read. Phonological and semantic representations clearly exist in some form prior to reading
acquisition, but orthographic representations must develop as part of the process of reading. This
was not reflected in Simulation 1. Simulation 2 explored the effect of allowing the orthographic rep-
resentations to be learned by using the same architecture as Simulation 1, but without applying ortho-
graphic targets to the orthographic layer of units. The performance of the network in Simulation 2 was
examined in comparison with the results from Simulation 1.

3.1. Method

3.1.1. Model architecture
Fig. 5 shows the architecture for Simulation 2. The encoding procedures for visual and phonological

representations were the same as those used in Simulation 1. The major change in the training proce-
dure from Simulation 1 was that the network was trained to map from visual input to phonological
output without being given the explicit knowledge of orthography. Other training conditions were ex-
actly the same as those used in Simulation 1. The procedures for testing the performance of the net-
work on naming words and nonwords were the same as in Simulation 1.

3.2. Results

After 1600 epochs of training, the network was 99.19% accurate. Most words not being pronounced
correctly were very low-frequency words and homographs. For nonword reading, the network was
again tested on the nonwords taken from Glushko (1979). The performance of the network was
93.25% which is closer to human performance than either PMSP96 or Simulation 1. Overall, the results
Fig. 5. The architecture of the feedforward network with an additional hidden layer instead of an orthographic layer.
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showed the network even without implicit knowledge of orthography can be trained successfully to
name words and nonwords.

3.2.1. Frequency and consistency effects
Simulation 1 showed that the model can reproduce the interaction between frequency and consis-

tency. It is also important to examine whether Simulation 2 can simulate this effect. Fig. 6 illustrates
the significant interaction between frequency and consistency, F(1,92) = 15.00, p < .001. The ANOVA
analysis also showed that both main effects of frequency, F(1,92) = 24.64, p < .001 and consistency,
F(1,92) = 46.26, p < .001 were significant.

3.3. Simulation of word-length effects

The network was also tested on Weekes’ (1997) dataset. The results showed that the network can
correctly read all high-frequency and low-frequency words. The performance on nonwords was at
92.60% correct. A 3 � 4 within-subjects ANOVA analysis was performed to analyse the error scores
produced by the network. The main effects for both word type, F(1.04,9.38) = 156.64, p < .001 (with
a Greenhouse–Geisser adjustment to compensate for the violation of sphericity assumption) and word
length, F(3,27) = 19.86, p < .001 were significant. There was also a significant word length by word
type interaction, F(2.07,18.62) = 7.87, p = .003 (with a Greenhouse–Geisser adjustment to compensate
for the violation of sphericity assumption). Fig. 7 shows the interaction between word length and
word type. The pattern of this interaction was similar to that seen in Weekes’s study. For nonwords,
the errors became larger as the number of letters increased while for words this increase was present
but much reduced. One minor discrepancy between these findings and those of Weekes was that the
word-length effect for high-frequency words was statistically reliable (though small) for the current
simulation but not for the human subjects. To examine whether there is an interaction between word
length and word frequency, a 2 � 4 within-subjects ANOVA analysis was performed. The result
showed that both main effects for word length, F(3,27) = 74.78, p < .001, and for word frequency,
F(1,9) = 134.28, p < .001, were significant. There was a significant interaction between word length
and word frequency, F(3,27) = 7.94, p = .001. A linear regression analysis was also performed to com-
pare the regression coefficients for the different stimuli types, the coefficient for nonwords
(slope = .069; CI: .000–.138) was much greater than that for both low-frequency words (slope = .016;
CI: .004–.028) and high-frequency words (slope = .013; CI: .007–.018), indicating the word-length ef-
fect on nonword reading was greater than that for low-frequency words, and the word-length effect
on naming low-frequency words was greater than that for high-frequency words.
Fig. 6. Mean phonological error as a function of frequency and consistency across 10 runs for Simulation 2.



Fig. 7. Mean error score computed at the phonological level for Simulation 2 as a function of word length and word type. Error
bars represent standard errors.
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4. What causes the word-length effects?

Both Simulation 1 and Simulation 2 could name words and nonwords correctly. However, only
Simulation 2 produced a correct interaction pattern of word length and word type. The key difference
between two networks relates to the orthographic representations. In Simulation 1 the network was
explicitly trained to map from V ? O ? P, while in Simulation 2, the orthography layer was replaced
with a hidden (H) layer of the same size (allowing the network to develop it’s own ‘‘orthographic’’ rep-
resentations). In Simulation 1, as in PMSP96, the orthographic and phonological representations are
designed specifically to overcome the dispersion problem: while this is generally a desirable thing
as it promotes generalisation it is also likely to reduce any length effect as the orthographic represen-
tations become insensitive to length. For instance, graphemes ‘‘P’’ in PAY and ‘‘P’’ in SPRAY are coded
exactly the same in the onset cluster irrespective of its letter position. However, in Simulation 2, there
is no explicit orthographic layer in the network – this seems to result in the development of represen-
tations that have a degree of sensitivity to length. If this is true we would expect that the performance
of a particular letter within a word might be dependent on the position of the letter in a word (e.g.,
letter ‘‘P’’ in PAY versus letter ‘‘P’’ in SPRAY), and this effect would be modulated by the frequency with
which that letter appears in that position relative to the vowel. Table 3 shows the probability of loca-
tion of individual letters within a word based on the statistics of the training corpus. The V-Pos here
represents the fixed position on which the first vowel of each word aligned. The value for each letter in
a particular position is the probability of the letter appearing in that position. (Note that this is
weighted by the frequency of the whole word within the corpus.) As can be seen from Table 3, the
probability of letter ‘‘P’’ in PAY appearing to L-Pos1 is 0.3535 while the probability of letter ‘‘P’’ in
SPRAY appearing to L-Pos2 is 0.1904. We hypothesised that Simulation 2 could keep this kind of letter
position information and should be more sensitive to the location of an individual letter within a
word. Thus the performance on any individual letter/sound correspondence should be predicted by
the probabilities of the letter location shown in Table 3. Given that the probability of encountering
a particular letter decreases with increasing distance this is likely to produce a length effect. Specifi-
cally, the error made by Simulation 2 would increase as there were more letters in the periphery. By
contrast, Simulation 1 should be less affected by the location of individual letter within a word.

4.1. Method

To test this idea we used a set of all 3-letter high frequency CVC words in our training corpus. There
were two tests: (1) whether the network could pronounce the initial consonants where they were



Table 3
The probability of location of individual letter within a word.

L-Pos5 L-Pos4 L-Pos3 L-Pos2 L-Pos1 V-Pos R-Pos1 R-Pos2 R-Pos3 R-Pos4 R-Pos5 R-Pos6

A 0 0 0 0 0 0.7966 0.1995 0.0039 0 0 0 0
B 0 0 0 0.2347 0.5472 0 0.1418 0.0762 0 0 0 0
C 0 0 0.0044 0.2786 0.2676 0 0.2515 0.1799 0.0180 0 0 0
D 0 0 0 0.0443 0.1219 0 0.1095 0.2123 0.1593 0.3076 0.0432 0.0020
E 0 0 0 0 0 0.3633 0.1011 0.3006 0.2049 0.0291 0.0010 0
F 0 0 0 0.2138 0.4324 0 0.2209 0.1329 0 0 0 0
G 0 0 0 0.1913 0.2086 0 0.2407 0.3454 0.0140 0 0 0
H 0 0 0 0.0398 0.6196 0 0.0052 0.1368 0.1788 0.0189 0.0009 0
I 0 0 0 0 0 0.8109 0.1891 0 0 0 0 0
J 0 0 0 0 0.9960 0 0.0040 0 0 0 0 0
K 0 0 0 0.0600 0.1135 0 0.1460 0.6759 0.0047 0 0 0
L 0 0 0 0 0.4402 0 0.2777 0.2712 0.0105 0.0004 0 0
M 0 0 0 0 0.4259 0 0.3749 0.1952 0.0041 0 0 0
N 0 0 0 0 0.1649 0 0.5744 0.2468 0.0139 0 0 0
O 0 0 0 0 0 0.8941 0.1034 0.0025 0 0 0 0
P 0 0 0.0030 0.1904 0.3535 0 0.2380 0.2148 0.0003 0 0 0
Q 0 0 0 0.5659 0.2908 0 0.0666 0.0766 0 0 0 0
R 0 0 0 0.0030 0.4963 0 0.3435 0.1305 0.0248 0.0019 0 0
S 0 0.0005 0.0444 0.1991 0.0990 0 0.1488 0.1685 0.2881 0.0464 0.0050 0.0001
T 0 0 0.0188 0.1981 0.2089 0 0.2103 0.2615 0.0833 0.0185 0.0006 0
U 0 0 0 0 0.0396 0.6213 0.3132 0.0142 0.0116 0 0 0
V 0 0 0 0 0.2624 0 0.5026 0.2350 0 0 0 0
W 0 0 0 0.1619 0.4687 0 0.3594 0.0101 0 0 0 0
X 0 0 0 0 0 0 0.8983 0.0778 0.0239 0 0 0
Y 0 0 0 0 0.2583 0.2626 0.4791 0 0 0 0 0
Z 0 0 0 0 0.2063 0 0.4095 0.3198 0.0645 0 0 0

Note: V-Pos: the position of the first vowel of each word; L-PosK: K position(s) left of V-Pos; R-PosK: K position(s) right of V-Pos.
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moved one slot further from vowel toward the left; (2) whether the network could pronounce the final
consonants moved one position to the right. Examples of the stimuli are shown in Fig. 8. Where this
manipulation resulted in the initial or final consonant falling into a slot where it had never been pre-
sented before the stimuli was not included in the test. Hence, there were in total 68 words for the ini-
tial consonant test and 74 words for the final consonant test.

4.2. Results

Figs. 9a and 9b show the error score on phonology for the letter of interest within the word on the
initial consonant test and final consonant test. The error score was for the individual letter rather than
for whole word. As can be seen in Figs. 9a and 9b, the error increments in Simulation 2 were much
larger than in Simulation 1 when the letter was moved. Two 2 � 2 repeated measures ANOVA with
letter position (moved, not moved) as a within-subject factor and Simulation (1, 2) as a between-sub-
ject factor were performed to analyse the data. For the initial consonant test, the main effect of letter
position was significant, F(1,18) = 64.79, p < .001. There was a significant interaction between Simula-
tion and letter position, F(1,18) = 59.91, p < .001. Similarly, for the final consonant test, the main effect
of letter position, F(1,18) = 96.96, p < .001, was significant. There was a significant interaction between
Simulation and letter position, F(1,18) = 82.03, p < .001. These results demonstrated that Simulation 2
Fig. 8. Examples of 3-letter CVC words: top – the initial consonant ‘‘b’’ is moved one slot away from vowel toward the left;
middle – the trained condition; bottom – the final consonant ‘‘d’’ is moved one slot away from vowel toward the right.



Fig. 9a. Mean error score of the networks on 3-letters words with the initial consonant in moved or not moved condition. The
error score was for the individual letter rather than for whole word. Error bars represent standard errors.

Fig. 9b. Mean error score of the networks on 3-letters words with the final consonant in moved or not moved condition. The
error score was for the individual letter rather than for whole word. Error bars represent standard errors.
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was more sensitive to the letter position within a word than Simulation 1 at the phonological level.
The performance of Simulation 2 is consistent with the probability pattern shown in Table 3 in which
letters being further from the middle of a word tend to have smaller probabilities to be seen before
than letters being near the middle of a word.
5. Simulation 3

In Simulation 2, the network demonstrated a differential word-length effect similar to that seen in
human subjects. The simulation data does not completely tally with Weekes’ (1997) data because
there is a small word-length effect for high-frequency words, which Weekes did not find in human
subjects. However, more recent work suggests there should be a small but reliable length effect for
all words (Balota et al., 2004). Another possibility is that the reliable length effect on naming high-fre-
quency words in Simulation 2 may be a consequence of the absence of semantic effect in the current
model. In normal reading, the time course of phonological processing would be influenced by the
meanings of words and it is likely that this influence will mitigate or even completely eliminate length
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effects for words. Simulation 3 examined to what degree the length effects for words will be reduced
by semantic contributions.

In the literature, several schemes for representing semantic information have been proposed both
for behavioural studies and for use in computational modelling (Garrard, Lambon Ralph, Hodges, &
Patterson, 2001; Harm, 2002; Landauer, Foltz, & Laham, 1998; Lund & Burgess, 1996; McRae, Cree,
Seidenberg, & McNorgan, 2005; Plaut, 1997; Rohde, Gonnerman, & Plaut, 2006), but no consensus
has been reached on the best method to use. A full implementation of semantic representations is be-
yond the scope of the present paper; however, it is possible to circumvent the problem of semantic
representation and still approximate the semantic effect by adding external input to the phoneme
units at the phonological layer (Plaut et al., 1996; Welbourne & Lambon Ralph, 2007; Woollams,
Lambon Ralph, Plaut, & Patterson, 2007). The assumption being that the semantic pathway has learned
the meaning and pronunciation of a word and it would therefore have positive contributions to the
activations of phonemes within the phonological pathway. In Simulation 3, the network was trained
with the addition of this external semantic influence. Once trained it was tested on Weekes’ (1997)
dataset to examine whether this manipulation altered the pattern of length effects for words and
nonwords.

5.1. Method

The architecture of the network was the same as in Simulation 2 except that there was an addi-
tional semantic input directly to the phonological layer. To simulate the development of the semantic
pathway in human reading system, the contribution of the semantic input to the phonological units
was gradually increased with time and modulated by the frequency of the word. The value of the
semantic input was set according to the following equation:
Semantic input ¼ 1
1þ e�ðkðlogðfþ2ÞÞ�1Þ � UðtÞ
where f was the frequency of the word (Kucera & Francis, 1967), and k was selected so that the most
frequent word had a maximum semantic input of .95 and the least frequent word had a minimum
semantic input of .5 (k = 1.14). U(T) was a time-dependent stepwise function, where each step was
200 training epochs. The magnitude of the stepwise function ranged from 0.2 to 1.6 in steps of 0.2;
these parameters were adapted from those used in Welbourne and Lambon Ralph’s (2007) simulation.

5.2. Results

After training, for word reading, the network achieved an accuracy of 99.97 percent, which was
slightly better than the performance of Simulation 2 because of the contribution from the semantic
pathway, which allowed the network to distinguish the homographs. For nonword reading, the per-
formance was 93.72% correct. On the stimuli from Weekes (1997) the network could correctly read
all high-frequency words and low-frequency words. The performance on nonword reading was
91.6% correct. A 3 � 4 within-subjects ANOVA analysis was performed to analyse the error scores pro-
duced by the network. There were significant main effects for both word type, F(1.03,9.23) = 679.63,
p < .001 (with a Greenhouse–Geisser adjustment) and word length, F(3,27) = 28.55, p < .001. There
was also a significant word length by word type interaction, F(1.98,17.84) = 18.73, p < .001 (with a
Greenhouse–Geisser adjustment). Fig. 10 shows the mean error score at the phonological level as a
function of word length and word type. The interaction pattern of the word length and word type
is similar to that seen in Simulation 2 (Fig. 7). However, in Simulation 3 the difference between words
and nonwords has increased. There was still a small but reliable length effect for high-frequency
words F(1.27,11.46) = 27.65, p < .001 (with a Greenhouse–Geisser adjustment). A linear regression
analysis was performed to compare the regression coefficients for the different word types, the coef-
ficient for nonwords (slope = .091; CI: .010–.172) was much greater than that for both low-frequency
words (slope = .007; CI: 003–.012) and high-frequency words (slope = .004; CI: .002–.006), consistent
with the findings in Simulation 2 of the differential word-length effects on naming words and non-
words. In addition, the regression coefficient for high-frequency words was much smaller than that



Fig. 10. Mean error score computed at the phonological level for Simulation 3 as a function of word length and word type. Error
bars represent standard errors.
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in Simulation 2 (slope = .013; CI: .007–.018), showing that the length effect for high-frequency words
was compressed by the addition of semantics.
6. Simulation 4: Other visual representations and serial effects

The simulations so far have clearly demonstrated that this parallel model can account for the
length by lexicality interaction that had previously been thought to require a serial processing mech-
anism. However, before it can be truly regarded as a viable model of word naming it is important to
investigate two additional issues: (1) To what extent do the results reported so far depend on the vo-
wel-centred visual representation scheme that we have adopted. (2) Can the model be extended to
account for other ‘‘serial’’ effects in reading, in particular the ‘‘position of irregularity effect’’ (Rastle
& Coltheart, 1999) and ‘‘whammy effects’’ (Rastle & Coltheart, 1998).

6.1. Other types of visual representations

The visual representations used so far adopt a vowel-centred coding scheme, which we have ar-
gued is a close approximation to the optimal viewing position (OVP; McConkie et al., 1989; Oregan
et al., 1984). However, the exact alignment of the OVP for any particular word is not precisely defined
and may well vary between individuals or even between fixations in the same individual (Rayner,
1998). Since it remains unclear exactly how words are optimally positioned, it is important to explore
how changes in word alignment would affect our pattern of results. To investigate this we trained the
network under several different word alignment policies covering a range of possible OVP positions
and including one version with variable positioning. The different policies were as follows:

1. Vowel-centred with variability of one position left or right (VowelLR): this included the original
vowel-centred set together with two additional sets shifting one position to the left or right of
the original fixated column.

2. Optimal viewing position 1 (OVP1): the words were fixated one position left of the centre.
3. Optimal viewing position 2 (OVP2): the odd-length words were fixated at the centre and others

were fixated at the one position left of the centre.
4. Optimal viewing position 3 (OVP3): each word with less than 5 letters was fixated one position left

of the centre and longer words were fixated at the third letter.
5. Left aligned (LA): each word was aligned on its first letter.
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Very long words, which could not be accommodated by using 12 slots when shifting the words to
one position right of the original fixated column, were removed. For the VowelLR version, which in-
cluded three times as many stimuli as the original, the number of units in the first two hidden layers
was increased to 100 and 200 respectively. All other details were the same as Simulation 2. The net-
works’ performance on naming words and nonwords is summarised in Table 4. All of the networks
performed similarly to Simulation 2 regardless of the exact positioning of the visual stimuli with accu-
racy on words varying between 97.13 and 99.63, and nonword accuracy varying between 93.25 and
97.21.

In addition to testing accuracy on naming words and nonwords, it is important to examine whether
the networks can produce both the frequency by consistency and the word length by lexicality inter-
actions. The results for these tests are summarised in Tables 5 and 6. Regardless of the alignment of
visual representations all networks produced the expected interactions of frequency by consistency
(all ps < .05) and lexicality by length (all ps < .05), except for the left aligned (LA) version where the
lexicality by length interaction was only marginally significant (p = .071).

Overall, these results demonstrate that simulation of the length by lexicality effect is not critically
dependent on the exact positioning of the visual stimuli.
6.2. Simulations of other serial effects

In addition to the length by lexicality interaction there are two other ’’serial’’ effects, which are also
often used as evidence against parallel models: the position of irregularity effect (Rastle & Coltheart,
1999) and the whammy effect (Rastle & Coltheart, 1998). Rastle and Coltheart (1999) found a position
of irregularity effect in reading low frequency exception words. The regularity effect was stronger for
first position irregular words (e.g., chef) than for second position irregular word (e.g., cooks), and it
was stronger for second position irregular word than for third position irregular words (e.g., glow). This
effect has been interpreted as evidence for serial processing, which appears to be inconsistent with any
Table 4
Performance with different types of visual representations.

Network type Training corpus Glushko (1979) Consistent Nonwords

Simulation 2 99.19 93.25
VowelLR 97.13 94.81
LA 99.30 93.72
OVP1 99.45 94.19
OVP2 98.73 93.95
OVP3 99.63 97.21

Note: VowelLR: vowel centred with the variability of one position left or right; LA: left
aligned; OVP1: optimal viewing position 1; OVP2: optimal viewing position 2; OVP3:
optimal viewing position 3.

Table 5
ANOVA results of the networks with different types of visual representations on the frequency and consistency effect.

Network Type Main effect Interaction

Frequency Consistency Frequency � consistency

F(1,92) P F(1,92) P F(1,92) P

VowelLR 41.57 <.001 100.95 <.001 28.73 <.001
LA 31.28 <.001 50.84 <.001 12.18 =.001
OVP1 29.46 <.001 43.80 <.001 18.52 <.001
OVP2 50.51 <.001 80.71 <.001 31.97 <.001
OVP3 42.19 <.001 65.72 <.001 26.92 <.001

Note: VowelLR: vowel centred with the variability of one position left or right; LA: left aligned; OVP1: optimal viewing position
1; OVP2: optimal viewing position 2; OVP3: optimal viewing position 3.



Table 6
ANOVA results of the networks with different types of visual representations on the word length and lexicality effect.

Network type Main effect Interaction

Length Lexicality Length � lexicality

F(3,27) P F(2,18) P F(6,54) P

VowelLR 23.19a <.001 573.50 <.001 6.04 <.001
LA 14.57 <.001 191.72a <.001 2.74a =.071
OVP1 11.96 <.001 173.28a <.001 4.94a =.014
OVP2 19.12 <.001 175.91a <.001 4.95a =.012
OVP3 7.18 =.001 179.75a <.001 5.01a =.017

Note: VowelLR: vowel centred with the variability of one position left or right; LA: left aligned; OVP1: optimal viewing position
1; OVP2: optimal viewing position 2; OVP3: optimal viewing position 3.

a The value was with a Greenhouse–Geisser adjustment to compensate for the violation of sphericity assumption.
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model that maps orthographic representations to phonological representations in parallel. However,
Zorzi’s (2000) CDP model (a fully parallel model) was able to capture this effect and he further found
the position of irregularity factor was actually confounded with grapheme–phoneme consistency. In
addition, Kawamoto, Kello, Jones, and Bame (1998) have argued that this effect might be explained
by the nature of articulatory processes. The cost of irregularity observed for first position irregular word
is likely to result from initiating articulation. For words with late irregularities, this effect is not obvious
(but see Rastle, Harrington, Coltheart, and Palethorpe (2000) for a co-articulatory account).

Regarding to the whammy effect, Rastle and Coltheart (1998) demonstrated that 5-letter nonwords
with 3 graphemes produced longer latencies than 5-letter nonwords with 5 graphemes because of the
complexity of multi-letter graphemes. According to the serial processing account, the spurious pho-
neme unit will activate and then affect the late activation of the correct phoneme. However, the
whammy effect may also be explained by the parallel processing account simply due to the competi-
tion between phonemes. In fact, Rastle and Coltheart (1998) and Coltheart et al. (2001) have tested the
PMSP96 model on the same nonword stimuli and it showed a marginally significant whammy effect
(p = .058). It seems that both effects are still somewhat contentious. Nevertheless it remains the case
that whatever the theoretical source of these effects they are empirically valid. Thus, it is important to
investigate whether the model can simulate them.

6.2.1. Position of irregularity effects
The model was tested on the word stimuli used by Rastle and Coltheart (1999). The list included 88

low-frequency irregular words, and 88 low-frequency regular words matched on number of letters,
initial phoneme and frequency. For the current simulation, two irregular words were excluded be-
cause they were not in the model’s vocabulary. The model achieved 98.98% and 98.02% accuracy on
naming the regular and irregular words respectively. Error items were discarded from subsequent
analyses along with any responses outside three standard deviations from the mean error scores. After
those items were removed from analysis, 85 matched pairs of items remained.

A repeated measures ANOVA was performed on the mean error scores, with regularity and position
as within-subject factors. The results showed that both the main effect of position, F(2,18) = 67.92,
p < .001, and the main effect of regularity, F(1,9) = 185.76, p < .001, were significant. There was an sig-
nificant interaction between regularity and position, F(2,18) = 8.25, p = .003, as shown in Fig. 11a. Bon-
ferroni post hoc comparisons of regularity groups showed that the irregular words produced
significantly higher error scores than did regular words, p < .05. Results of position conditions showed
that all pairwise comparisons were significant, all ps < .05.

The main point of this effect is to show the cost of irregularity for low-frequency exception words
would be modulated by the position of irregularity. Fig. 11b shows the Z transformation of the mean
error scores of the network on the irregular words across positions. To compare with human data, the
corresponding item latencies in the Rastle and Coltheart (1999) study were used. The Z score obtained
from the human naming data were plotted in Fig. 11b as well. In addition, networks with different
visual representations were tested on this effect and their Z scores of the irregular words were



Fig. 11a. Mean error score computed at the phonological level for Simulation 2 on the regular and irregular words as a function
of irregularity position.

Fig. 11b. Z transformation of mean error scores from the networks with different visual representations plotted against human
data for reading irregular words. Human Data is taken from Appendix D in the Rastle and Coltheart (1999) study.
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included in the same figure. All of the patterns produced by the networks were very similar to those
seen in the human data.
6.2.2. Whammy effects
The vowel-centred version of the model was tested on two nonword sets consisting of 3 and 5

grapheme words as used by Rastle and Coltheart (1998). Some of these nonword stimuli are unusual
because a number of items have unique orthographic bodies (e.g., elst). These items would not be pro-
cessed correctly because the model will not have had the opportunity to learn the correct pronunci-
ations of similar words, and so will have no basis for generalisation. Accordingly, these items were
removed along with their pairwise matches. That left 18 matched pairs of items. A one way repeated
measure ANOVA was performed on the error scores from these items. The result showed a significant
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‘‘whammy’’ effect, F(1,9) = 6.42, p = .032, with the 3-grapheme items producing higher error scores
(M = 0.344 SD = 0.073) than the 5-grapheme items (M = 0.236 SD = 0.084).
7. General discussion

This paper describes a parallel distributed processing model of single word reading that includes a
visual processing component. Simulation 1 used this component to map onto an orthographic layer
with predetermined representations. Its performance on naming words and nonwords was similar
to that achieved by PMSP96 (Plaut et al., 1996). In Simulation 2, the same network was trained with-
out predefined orthographic representations. Overall performance was similar to Simulation 1 except
when testing for word-length effects. Simulation 2 could account for the differential word-length ef-
fects observed in normal human reading, while Simulation 1 did not show the linear effect of length
seen in human data. These data provide compelling evidence that the existence of a length by lexical-
ity interaction does not force the conclusion that there is a serial processing component to reading.
Simulation 3 showed that the addition of a semantic contribution to phonology, acts to increase the
interaction between lexicality and length. The length effect for real words was still not completely
eliminated leaving a length effect for high-frequency words that was reliable but smaller than in Sim-
ulation 2, and much smaller than the length effect for nonwords (see Fig. 10). These results provide
evidence of the existence of small length effects for reading high-frequency words, which appears
to be somewhat inconsistent with Weekes’ data. However, it might be reasonable to assume that Wee-
kes’s failure to find any length effect for high frequency words was in fact due to a lack of statistical
power as there has been subsequent evidence indicating that there should be a small length effect
even for high frequency words (Balota et al., 2004; New et al., 2006; Penolazzi et al., 2007). Perhaps
the best interpretation of the available data is that there is an interaction between word lexicality
and word length such that the word-length effects for nonwords are greater than low-frequency
words (Richards & Heller, 1976; Weekes, 1997), and the length effects for low-frequency words are
greater than high-frequency words (Balota et al., 2004; Penolazzi et al., 2007; Weekes, 1997). Our find-
ings are support this interpretation. In addition, Simulation 4 demonstrated that these results are not
dependent upon the exact choice of fixation position, and that they can be extended to account for
other ’’serial’’ effects such as position of irregularity and whammy effects.

The differences between Simulation 1 and Simulation 2 may be attributable to the way in which
the dispersion problem is tackled by the two networks. Following Plaut et al. (1996) Simulation 1
adopted the same coding for both orthographic and phonological representations. This coding scheme
completely removes any trace of dispersion between different letter positions in each individual seg-
ment of the word (onset, vowel and coda). However, this scheme is clearly not completely realistic
from a biological point of view as orthographic representations have to be developed as part of the
process of learning to read and unlike phonological representations are not predefined by earlier lan-
guage learning. To address this problem Simulation 2 was allowed to develop its own orthographic
representations. It is important to emphasise that Simulation 2 did have a stage for orthographic pro-
cessing but orthography is implemented in the form of an intermediate layer of hidden units mediat-
ing visual information and generating inputs for the later stage of phonological processing. This led to
an emergent length effect which was greater for nonwords than for words. Nonword reading accuracy
was also closer to human performance for Simulation 2 indicating that the use of structured phono-
logical representations on their own are sufficient to guide the development of a set of orthographic
representations that alleviate the dispersion problem. From this it seems clear that the emergent lex-
icality by length interaction stems from the pressure to learn the mappings between visual represen-
tations, which are strongly influenced by letter position and central phonological representations that
are independent of length, but constrained by phonotactic considerations. If this is true then we might
expect that Simulation 1 would also show a length by lexicality interaction, but here it would be hid-
den in the mappings between the visual and orthographic layers. Interestingly, the error patterns of
the orthographic output in Simulation 1 do in fact show a lexicality by length interaction similar to
that produced by Simulation 2 (see Fig. 4b). Of course the orthographic coding that emerges in Sim-
ulation 2 may not be as perfect as the one used in Simulation 1 and PMSP96 in terms of overcoming
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the dispersion problem; however, it does seem more likely to resemble to the scheme adopted in hu-
man reading system because the performance of Simulation 2 on nonword reading is closer to that of
human subjects; and importantly Simulation 2 can replicate the differential word-length effects ob-
served in human subjects.

If our model is correct and length effects are an emergent property of visual processing then there
should be convergent evidence from imaging studies that show length effects and a length by lexical-
ity interaction in visual processing areas. Two recent studies provide just such data: An MEG study
conducted by Wydell et al. (2003) found early length effects for both words and nonwords in the
occipital cortex. They further found a length by lexicality interaction of the cortical activations in
the posterior left superior temporal cortex. A more recent fMRI study by Schurz et al. (2010) also
showed a substantial length effect on activation for both words and nonwords in the left occipital cor-
tex and identified the VWFA as exhibiting an interaction of length by lexicality. These findings suggest
that visual processing is involved in the emergence of length effects in normal reading. These data are
therefore entirely consistent with our hypothesis. In our model, the visual layer could be considered as
a visual processing component corresponding to primary visual cortex with the orthographic layer
mapping onto the VWFA.

The key result of our study is that an interaction between length and lexicality can arise from a sin-
gle mechanism in a parallel model. Previously Weekes (1997) argued that his data implied that there
must be a serial component to reading. This was on the basis that the length effect for nonword read-
ing reflects the sequential operation of a non-lexical reading mechanism. This interpretation supports
models of reading that assume a serial reading mechanism for nonwords such as the DRC or CDP+
models. Note:although the CDP+ model is a parallel model it has a specific serial component for pars-
ing graphemes, which generates the interaction between length and lexicality. Perry et al. (2007)
tested a completely parallel CDP+ model (i.e., without a serial graphemic parsing process) on Weekes’
data and the result showed no trace of a length effect. The current simulation results clearly demon-
strate that a fully parallel model with a visual processing stage can produce a significant interaction
between word length and word lexicality.

Both the position of irregularity effect and the whammy effect have been taken, along with the
length effect, as evidence of serial processing, and against parallel models (Coltheart et al., 2001; Perry
et al., 2007; Rastle et al., 2009). However, there are convincing alternative accounts for both of these
effects. The position of irregularity effect is complicated by other factors such as grapheme to phonol-
ogy consistency (Zorzi, 2000) and frequency (Perry et al., 2007). Thus, one may not be compelled to
interpret it as a serial effect. In fact both the parallel CDP model and the present parallel model can
simulate this effect, which strongly suggests that the alternative account may be correct. With regard
to the whammy effect, the present parallel model simulates the effect, clearly demonstrating that it
cannot be used to arbitrate between serial and parallel models. This suggests the competition between
multiple graphemes is sufficient as an alternative explanation for the origin of this effect in humans. It
is interesting to note that although these effects are often taken together as evidence of serial process-
ing, our modelling suggests a dichotomy in that the whammy and serial position effects arise from
consistency and frequency whereas the length by lexicality effect arises from the nature of the map-
ping between visual and phonological representations and requires a model with a visual processing
system to fully capture it.

The role of visual processing in accounting for the length effect is particularly interesting in view of
the neuropsychological evidence from pure alexia patients. The hallmark of pure alexia is an abnor-
mally strong length effect which is thought to result from a visual deficit. The current reading model
would serve as a good opportunity to investigate the possibility of modelling length effects in PA
patients.

In summary, these simulation results suggest that the key to understanding the emergence of
length effects in parallel models is the transformation between visual representations, which are
strongly influenced by letter position and word length, and central phonological representations that
are independent of length, but constrained by phonotactic considerations. These results provide new
evidence to challenge the assumption that a serial mechanism is required to account for length effects
in word and nonword reading.
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